Scaling regimes in spherical shell rotating convection
نویسندگان
چکیده
Rayleigh-Bénard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use threedimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning 3 × 10−7 ≤ E ≤ 10−1, Rayleigh numbers within the range 10 < Ra < 2 × 10 and a Prandtl number unity. The radius ratio ri/ro is 0.6 in all cases and the gravity is assumed to be proportional to 1/r. We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly-rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a small subset of our numerical data approaches the asymptotic diffusivity-free scaling of rotating convection Nu ∼ RaE in a narrow fraction of the parameter space delimited by 6Rac ≤ Ra ≤ 0.4E−8/5. Using a decomposition of the viscous dissipation rate into bulk and boundary layer contributions, we establish a theoretical scaling of the flow velocity that accurately describes the numerical data. In rapidly-rotating turbulent convection, the fluid bulk is controlled by a triple force balance between Coriolis, inertia and buoyancy, while the remaining fraction of the dissipation can be attributed to the viscous friction in the Ekman layers. Beyond Ra ' E−8/5, the rotational constraint on the convective flow is gradually lost and the flow properties continuously vary to match the regime changes between rotation-dominated and non-rotating convection. We show that the quantity RaE provides an accurate transition parameter to separate rotating and non-rotating convection.
منابع مشابه
Multistability in rotating spherical shell convection.
The multiplicity of stable convection patterns in a rotating spherical fluid shell heated from the inner boundary and driven by a central gravity field is presented. These solution branches that arise as rotating waves (RWs) are traced for varying Rayleigh number while their symmetry, stability, and bifurcations are studied. At increased Rayleigh numbers all the RWs undergo transitions to modul...
متن کاملRegimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing
We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewal...
متن کاملBifurcations of rotating waves in rotating spherical shell convection.
The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs o...
متن کاملEquatorial Symmetry of Chaotic Solutions in Boussinesq Convection in a Rotating Spherical Shell
We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the inner and outer sphere rotation due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number and the Taylor number are fixed to 0.4, 1 and 500, respectively. The inertial moments of the inner and outer s...
متن کاملBistability and hysteresis of dipolar dynamos generated by turbu- lent convection in rotating spherical shells
Bistability and hysteresis of magnetohydrodynamic dipolar dynamos generated by turbulent convection in rotating spherical fluid shells is demonstrated. Hysteresis appears as a transition between two distinct regimes of dipolar dynamos with rather different properties including a pronounced difference in the amplitude of the axisymmetric poloidal field component and in the form of the differenti...
متن کامل